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Recurrence conditions in space-time 

G S Hall 
Department of Mathematics, University of Aberdeen, The Edward Wright Building, 
Dunbar Street, Aberdeen AB9 2TY, Scotland 

Received 17 June 1976, in final form 6 September 1976 

Abstract. A general discussion of the recurrence properties of the Riemann, Ricci and Weyl 
tensors is given. Space-times possessing these properties are classified according to the 
Petrov type of the Weyl tensor and the Se& type of the Ricci tensor. The proofs of some 
known theorems are shortened and some new results are given. 

1. Introduction 

In a number of papers, Thompson (l968,1969a, b, 1970) has discussed certain types of 
recurrence properties of tensors on Riemannian spaces and has considered the special 
case of a Lorentzian space-time manifold. More recently, McLenaghan and Leroy 
(1 972) have discussed complex recurrent and conformally symmetric space-times. In 
this paper some results of the above authors are reconsidered and extended and some 
new approaches suggested. 

Throughout the paper, M will denote a Lorentzian space-time manifold and if 
p E M, Tp(M) will denote the tangent space to M at p .  The symbols V and 0 represent 
the covariant derivative operator and tensor product symbols respectively. When local 
coordinates are used, the notation will be the conventional one. 

It will often be useful to introduce a chart containing a null tetrad of vector fields 
with components I" ,  ma, e a ,  fa where I" and ma are non-collinear null vector fields and 
ea  and fa are spacelike vector fields, and where the equivalent conditions lama = eaea = 
fafa = 1 (all other inner products zero) and g a b  = 24,mb) + eaeb + f a f b  (the completeness 
relation) hold. Similarly, it will be useful to introduce an orthonormal tetrad of vector 
fields with components x", y" ,  z", f a  satisfying the equivalent conditions xaxa = y a y a  = 
Z"Z, = - tara = 1 (all other inner products zero) and gab = x&b + YaYb + z a z b  - fa tb .  

The algebraic classification of the Weyl and Ricci tensors will be used extensively. 
Details of the relevant aspects of the Petrov classification can be found in the papers of 
Sachs (1961) and Bel (1962). Concerning the Ricci tensor, a brief review of its algebraic 
properties will be presented here. (For more details see Plebanski (1964), Collinson 
and Shaw (1972) and Hall (1976a).) The Ricci tensor at p EM, considered as a linear 
map: Tp(M)+ Tp(M) may, on account of the Lorentz signature of M, take one of the 
four SegrC types (1, 1, 1, l}, (2, 1, l}, {3,1} and {z,  2, 1, 1) (or their degeneracies). In 
the notation of the last paragraph one can, for the first type, introduce an orthonormal 
tetrad of members of Tp(M) such that the components of the Ricci tensor at p become 

(1.1) Rab = P l x a x b  +PZYnYb + P 3 z a z b  - P 4 t a t b  

where the p are the (real) Ricci eigenvalues at p .  For the other cases one can, for each 
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30 G S Hall 

type, introduce a null tetrad at p such that in components, one has respectively 
(A ZO) (1.2) 

where the 5, CY, p, A and p are real numbers with A, p and p2 non-zero. One may always 
choose the null tetrad such that p = 1 in (1.3) whilst in (1.2), if A > O  (A CO) one may 
similarly choose A = 1 (A = - 1). 

It is noted that if a Ricci tensor has two distinct null eigendirections at p ,  then their 
associated eigenvalues are equal and the Ricci tensor has SegrC type (some degeneracy 
of) {( 1 ,  1)1, 1). Also, the Ricci tensor has a unique null eigendirection if and only if it is 
similar to a Jordan matrix with a non-simple elementary divisor (that is if and only if it is 
of type { 2 , 1 , 1 }  or {3,1} or some degeneracy thereof). Only the types { 1 , 1 , 1 , 1 }  and 
(2, 1, 1) contain members consistent with the ‘energy condition’ in general relativity. 

Throughout the paper, the Weyl tensor will be assumed well behaved in the sense 
that in all space-time regions under consideration, the Weyl tensor will be assumed to 
determine four (not necessarily distinct) null vector fields on the region which, at each 
point of the region, constitute the full set of Debever-Penrose vectors at that point. 
Similarly, any bivector will be assumed to determine, throughout its domain of 
definition, two (not necessarily distinct) null vector fields which, at each point of the 
domain, constitute the full set of principal null directions of the bivector at the point. 
Finally, a similar assumption is made for the eigenvectors of the Ricci tensor. For 
example, if a Ricci tensor is SegrC type (2, 1, 1} throughout a region, then it will be 
assumed that there exists one null and two spacelike vector fields throughout the region 
which are distinct Ricci eigenvectors at each point of the region. Similar assumptions 
are made for the other SegrC types. 

The following is a summary of the main points of the paper. In § 2, some preliminary 
results are given. In particular, it is shown that a space-time possessing a null (non-null) 
bivector with vanishing skew derivative is either Petrov type N or 0 (Petrov type D or 
0). The Ricci and Riemann tensors for such space-times are determined. In 0 3, 
complex recurrent and conformally symmetric space-times are discussed. It is shown 
that such (connected) space-times are of the same Petrov type everywhere and a simple 
proof is given of the theorem of McLenaghan and Leroy which states that such 
space-times are of Petrov type N or D. Those complex recurrent or conformally 
symmetric space-times with a gradient recurrence 1-form are shown equivalent to 
space-times with non-zero Weyl tensors which admit constant bivectors. This leads to a 
simple generalization of p-p wave space-times. In 0 4, Ricci recurrent space-times are 
discussed and it is shown that only Ricci tensors whose SegrC type is (a subtype of) 
{1,1,1,1} or {2,1,1} can be recurrent and that this subtype is the same everywhere if 
the space-time is connected. Some extensions to conformally flat space-times are given 
in P 5 whilst some physical applications to plane electromagnetic radiation are discussed 
in 0 6 .  

2. Preliminary results 

Two bivectors (2-forms) with components Aab and Bob in some chart about a point 
 EM are said to be in the same dual (equivalence) class of bivectors at p if at p ,  
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f o b  = e"hab (0 S 8 < 2n-), where for any bivector with components Tab in some chart, 
+ab denotes the (compiex) self-dual part of Tab, Tab = Tab + iTab. A property which if 
possessed by one bivector at p is possessed by all its dual equivalent bivectors at p will be 
called a dual invariant. One particular dual invariant property of a bivector is that of 
having vanishing skew derivative, = 0,  as is easily shown by using the Ricci 
identity. 

Suppose that a null bivector Nab has vanishing skew derivative at p E M. At p one 
has Nab = 21[&] where I" and p a  are the components in some chart about p of two 
members of T,(M) with lala = /"pa = 0. The equation Nab;[cd] = 0 when expressed in 
terms of the Ricci identity and contracted first with 1" and then with p a  easily yields 
laRabcd = 0, laRab = 0 and peRbecd = IbAcd for some real bivector Aab which necessarily 
satisfies l"Aab = 0 and 1[,Abc1 = 0. Thus Aab is proportional to a null bivector and 
p"Rab = 0. Next, at p ,  Nab = 21[&] where 4" are the components of some member of 
T,(M) satisfying I"qa =pa% = 0. Since at p ,  Nab;[cd]= O*N,b;[,d] = 0, similar argu- 
ments to those given above imply Rabqb = 0 and so the Ricci tensor is either zero or else 
has SegrC type ((2, 1, 1)) with vanishing eigenvalue at p and canonical form 

+ * 

* 
* 

Rab = Alalb (2.1) 

where A E R. It now follows from equation (A.I) that 1'6abcd = o at p where Cabcd = 

Cabcd +Eabcd are the components of the complex self-dual Weyl tensor and so the Weyl 
tensor is either zero or Petrov type N atp. The form of the Riemann tensor at p can now be 
evaluated using (2. l), the Petrov type N canonical form (Sachs 1961) and the null tetrad 
completeness relation for the components of the metric tensor. One finds 

+ 
* 

for real numbers A I  and A2 and a null bivector Pab with principal null direction 
proportional to I" .  

Conversely, if at p the Weyl tensor is zero or Petrov type N with repeated principal 
null direction along I" and the Ricci tensor satisfies (2.1), then any null bivector Nab with 
principal null direction along I" has vanishing skew derivative at p .  In fact, (2.1) implies 

and the final term is easily shown to be zero if the Weyl tensor is zero or Petrov type N. 
Suppose now that a non-null bivector Pab has vanishing skew derivative at p E M and 

let 1" and ma be the components, in some chart about p ,  of the principal null directions 
of Pab at p .  Since the property Pab;[cd] = 0 is dual invariant and since any dual class of 
bivectors contains a simple bivector, one need only consider simple bivectors with 
vanishing skew derivative. It is easy to show the existence of a real number T such that 
the bivector 2 TZLamb1 is in the same dual class as Pab at p .  Then the Ricci identity applied 
to this bivector at p ,  upon contraction first with I" and then with ma, yields laRabcd = 
I&d and maRabcd = - m A c d  for some bivector Aab. Hence l[&&] = m[&d] = 0 and 
so Ad = 2am[,lb1 for some cy E R So I" and ma are null eigenvectors of the Ricci tensor 
with (necessarily) equal eigenvalues from which it follows that the Ricci tensor has only 
simple elementary divisors. One then finds 
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Next, if one calculates the quantity laCabcdqcdmnlm where 7)abcd is the alternating symbol, 
the above results yield 

C a b c d l a l C  = 0 CabcdmamC = 0. (2.5) 
* * 

Thus the Weyl tensor is either zero or Petrov type D at p ,  the former case being 
characterized by the condition R = 0 at p .  A straightforward calculation using the 
above results and the Petrov type D canonical form for the Weyl tensor shows that the 
two-dimensional subspace of T,,(M) consisting of (spacelike) vectors orthogonal to I" 
and ma is an eigen-subspace of the Ricci tensor with eigenvalue $R -a. So the Ricci 
tensor has Segre type ((1, 1)(1, 1)) (or some degeneracy of this type) and canonical form 
at P 

Rub = 2al(ambl+ ( 5 ~  -a)(eaeb + f a f b )  (2.6) 
in the null tetrad notation of 8 1. The Riemann tensor can then be shown to take the 
form (see appendix 1): 

(2.7) 
* *  

Rabcd = (a - i R ) S a b S c d  f a S a b S c d  

where sa ,  = 21famb1. 

3. Complex recurrent space-times 

If U is some open subset of the space-time manifold M, then the Weyl tensor is calied 
complex recurrenr on U if at each point of U the complex self-dual Weyl tensor C i s  
nowhere zero and satisfies 

VL'= &@ k (3.1) 
where k is a nowhere zero complex 1-form. Within a chart in U, equation (3.1) takes 
the component form Cabcd;e  = Cobcdke. If (3.1) holds with k the zero 1-form on U, but 
with C nowhere zero on U, the Weyl tensor is called conformally symmetric on U. 
McLenaghan and Leroy (1972) have shown that if the Weyl tensor is complex recurrent 
or conformally symmetric on U, then it is either Petrov type Nor  D throughout U. Their 
proof however, was based on the initial assumption that for such spaces the Petrov type 
of the Weyl tensor was the same at each point of U and consisted of checking the 
consistency of each Petrov type with (3.1)T. A proof is now given which avoids this 
assumption and gives the result more quickly when U is connected in the manifold 
topology. Suppose then that U is a connected open submanifold of M and let p and q be 
any two points of U. Then it follows that there exists a piecewise smooth path c from p 
to q. The Lorentz connection on M allows one to set up an isomorphism between the 
tensor fibres over p and those over q according to the usual parallel propagation. Since 
the path c may be broken up into a finite number of smooth pieces each of which lies 
inside a chart of U, it is easily seen that in the proof outlined below one may suppose 
without loss of generality that the path c is smooth and lies entirely within a chart of U. 
Now if the Weyl tensor is complex recurrent or conformally symmetric on U, then (3.1) 

t A  proof similar to the one given by McLenaghan and Leroy and which also makes such an assumption can be 
achieved by writing the complex Weyl tensor in the canonical forms given by Sachs (1961) and checking the 
consistency of each Petrov type with (3.1) using the canonical bivector differential relations given by 
Robinson and Schild (1963). 

+ + 
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shows that the Weyl tensor at 4 is complex proportional to the parallel propagate at q of 
the Weyl tensor at p .  The constancy of the Petrov type of the Weyl tensor over U is now 
straightforward to establish. Suppose for example that the Weyl tensor is Petrov type N 
at p .  By Bel's criteria (Bel 1962), this is equivalent to the existence of a (necessarily null) 
non-zero vector 1 E T,(M) such that in components, la&abcd = 0. The parallel propagate 
of 1 along c to q would then furnish a non-zero null vector I 'E T,(M) satisfying 
l'"&&d = o where C' denotes the parallel propagate of the Weyl tensor along c. The 
above remarks combine to yield l'"&bcd = 0 at q and Bel's criteria are again used to 
conclude that the Weyl tensor is Petrov type N at q. Similar remarks apply to the other 
Petrov types using the appropriate Bel criteria for the type. In the type N case, it follows 
from the assumption concerning the existence of Debever-Penrose vector fields that 
there exists a null vector field on U which everywhere agrees with the principal null 
direction of the Weyl tensor. In the type I11 case, two Debever-Penrose vector fields 
will exist on U and a continuity argument using the above parallel propagation ideas 
shows that one of these vector fields will everywhere agree with the repeated Debever- 
Penrose vector of the Weyl tensor and the other with the non-repeated Debever- 
Penrose vector. Similar remarks apply to the other Petrov types. 

To see which Petrov types actually occur, suppose C is complex recurrent or 
conformally symmetric on U. Let 1 be a Debever-Penrose vector field on U and let 
p E U. If c is a smooth curve from p lying within a chart of U then by arguments similar 
to those given above, one concludes that at any point 4 on c, the parallel propagate of lp  
at q, 14, is a Debever-Penrose vector at q. Next, since there are a finite number of 
independent Debever-Penrose vectors at-each point of U, one can arrange, by choosing 
q sufficiently close top and using a continuity argument, that lq and 1; are parallel. Since 
the initial direction of c at p was arbitrary, one concludes that 1 is recurrent at p ,  
V1= 10 w for some 1-form w. In components, this recurrence condition becomes 
/a$ = lawb and so the Ricci identity yields l"Rabcd = lbAcd for some bivector Aab which 
must then be a simple bivector whose blade contains 1". It then follows that 1" is a Ricci 
eigenvector and that lalCRabc[dle] = 0. This information leads to /"lC&abc[dle] = o whence 
1 is a repeated Debever-Penrose vector. This shows that if the Weyl tensor is complex 
recurrent or conformally symmetric, then it has only repeated Debever-Penrose 
vectors and so must be of Petrov type N or Dt.  Further, these (repeated) Debever- 
Penrose vectors must be recurrent. 

In the type N case, if 1 is the repeated principal null direction of the Weyl tensor, the 
local equation laRabcd = / d , d  shows that at each point, either: (i) Aab = 0, (ii) Aab is a 
null bivector satisfying l"Aab = 0 or (iii) Aab is a non-null bivector whose (timelike) 
blade contains the direction 1. If Ce is a smoothly contractible chart domain of U such 
that (i) holds throughout V then it is readily shown that, in V, R = 0 and 1 is a Ricci 
eigendirection with zero eigenvalue. Also, the conditions l a ;b  = law(, and laRabcd = 0 
together with the Ricci identity and the PoincarC lemma show that w, is a gradient. 
wa = w," and so 1" is proportional to the constant null vector field e-wla. The Ricci 
tensor takes the form (2.1) and the Riemann tensor the form (2.2). A constant null 
bivector with principal null direction parallel to 1 is admitted (see appendix 2). If 
condition (ii) holds throughout Ce then again R = 0 in V and 1 is again a Ricci 
eigendirection with zero eigenvalue. The Ricci tensor takes the SegrC type ((3, 1)) with 
zero eigenvalue. If condition (iii) holds throughout Ce, again R = 0 in Ce and 1 is a Ricci 

t A similar proof which considers the eigenbivectors of the Weyl tensor is also possible. 
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eigendirection with non-zero eigenvalue. The Ricci tensor takes either Segrk type 
( 2 ,  (1, 1)) or ((1, 1)(1, 1)) where in both cases, the two non-zero eigenvalues differ only 
in sign (see appendix 2 ) .  

In the type D case, if 1" and ma represent, in local coordinates, the two (recurrent) 
principal null directions of the Weyl tensor, then on scaling so that lama = 1, one sees 
that the non-null bivector 2fcambl is constant. It then follows from the results of 9 2 that 
the Ricci and Riemann tensors satisfy (2.6) and (2 .7)  where in (2 .7) ,  Sa, is constant. The 
Weyl tensor invariant is i R  and the recurrence vector in (3.1) satisfies, in local 
coordinates, ka = (InlR I),". So the conformally symmetric case is characterized by 
R =constant ZO. Clearly there are no type D complex recurrent or conformally 
symmetric vacuum space-times (cf Ehlers and Kundt 1962). 

Now let %' be a connected chart domain. Then the following two conditions are 
equivalent. 

( a )  The Weyl tensor is conformally symmetric or complex recurrent with a gradient 

( 6 )  The Weyl tensor is nowhere zero on %' and %' admits a constant bivector. 
To see this, note that if ( a )  holds and the Weyl tensor is type N on %' then any 

complex null self-dual bivector V,, whose principal null direction coincides with the 
(recurrent) principal null direction of the Weyl tensor satistes V&;c = Vabac for some 
l-form a,. The complex Weyl tensor can then be written as C,,, = C' V,, V,, where C' 
is complex and the recurrence condition (3.1) gives 

recurrence l-form on %'. 

k ,  = (C')-'C,',+2a,. (3.2) 

So ka is a gradient e a ,  is a gradient, a, = a,". But this latter condition means that v a b  

is (complex) proportional to the constant complex null bivector e-n v a b .  Conversely, if 
(6) holds then it is firstly remarked that parallel propagation arguments similar to those 
presented earlier show that if a bivector is constant on V then it is either null throughout 
V or non-null throughout V. Suppose then that a constant null bivector v a b  is admitted. 
Then by 9 2, the Weyl tensor is Petrov type Non V and takes the above canonical form. 
It then follows that (3.1) holds with k, a gradient on V. In the type D case when (3.1) 
holds, then necessarily k,  is a gradient and as follows from above a constant non-null 
bivector is always admitted. Conversely if (6) holds and a constant non-null bivector is 
admitted on %' then, from 9 2, the Weyl tensor is Petrov type D and the principal null 
directions of the Weyl tensor coincide with those of the bivector and are recurrent. It 
then follows from the canonical Petrov type D form for the Weyl tensor (Sachs 1961) 
that (3.1) holds with k, a gradient. 

In the type N case, several characterizations can be given. In fact the following are 
equivalent if %j is connected and smoothly contractible. 

(a') The Weyl tensor is nowhere zero on V and V admits a constant null bivector. 
(b')  The Weyl tensor is conformally symmetric or complex recurrent on V with a 

gradient recurrence l-form and is Petrov type N. 
(c') The Weyl tensor is conformally symmetric or complex recurrent on V and on V 

the Ricci tensor takes the form (2.1) for some null vector field I" on %'. 
(d ' )  The Weyl tensor is Petrov type Non V and V admits a constant null vector field. 
That (a')  and (6 ' )  are equivalent has already been established. To show (a ' )  3 (d ' )  it 

is sufficient to recall the results of 0 2 and to note that the principal null direction of a 
constant null bivector contains a constant null vector. To show (d')J (c') note that if I" 
are the components of the constant null vector field then the Ricci identity gives 
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laRobcd = 0 and laRab = 0. It easiiy follows that I" must be the (unique) principal null 
direction of the Weyl tensor, jaC,bcd = 0 and from (A.1) one finds that (2.1) holds. 
Finally to show that (c ' )  3 (a') note that if (2.1) holds in %' for some null vector field I", 
then from the results of this section it follows that the Weyl tensor is Petrov type N and 
1" is recurrent. So any complex self-dual null bivector V a b  with 1" as principal null 
direction satisfies v , b ; c  = V a b a c  for some 1-form a, and has vanishing skew derivative 
by (2.3). Then since %? is smoothly contractible, a, is a gradient and a constant null 
bivector is admitted. 

It should be remarked that any of the conditions (a ' ) ,  (b'), (c'), (d ' )  above is 
equivalent to the type N case (i) condition mentioned earlier holding everywhere in %'. 
Also, the similarities between the special case characterized by the above four equival- 
ent conditions and the general vacuum complex recurrent case are now apparent (Hall 
1974)t. 

Finally, it is pointed out that in the complex recurrent and conformally symmetric 
case, a detailed study of the exact form of the metric tensor has been undertaken 
(McLenaghan and Leroy 1972, see also McLenaghan and Thompson 1972a, b, Leroy 
and McLenaghan 1973 and Collinson and Soler 1973). 

4. Ricci recurrent space-times 

If U is some open subset of the space-time manifold M then the Ricci tensor R is called 
recurrent on U if R is non-zero on U and V R  = R 0 8i: for some 1-form 8 on U. In 
local coordinates this gives Rab;c = Rab& where 8, are the components of 8. In order to 
show which of the algebraic types of Ricci tensor discussed in 9 1 are consistent with the 
Ricci tensor being recurrent, it is first shown that if U is connected and R recurrent on 
U, then the SegrC type of R is the same throughout U. The proof is similar to that given 
for the Weyl tensor in the last section. One shows by the parallel propagation of 
eigenvectors that if p ,  q E U, then to each spacelike (respectively timelike, null) eigen- 
direction of R at p there corresponds a spacelike (respectively timelike, null) eigen- 
direction of R at q and conversely. The result then follows. A check on which of the 
algebraic Ricci types are consistent with the recurrence condition can be obtained 
directly, after a lengthy argument, from the canonical Ricci types of § 1. It turns out 
(Hall 1976b) that no Ricci tensor of SegrC type (3, 1) or { z ,  2, 1, 1) can be recurrent on 
U, that if a Ricci tensor has SegrC type (2, 1, 1) and is recurrent on U then all its 
eigenvalues are zero (and so takes the local form (2.1)) and that if the Ricci tensor has 
SegrC type { 1, 1, 1 , l )  and is recurrent on U then, locally, (1.1) holds where throughout 
the relevant chart, the p satisfy one of the following conditions: 

(a )  O Z P a  = P b  ' P c  = p d  

(c) 

( b )  P d = O # P a = P b = P c  

( d )  P c = P d = O f p a = P b  
(4.1) 

0 # Pa = Pb f Pc = Pd # 0 
where in (4.1), (a, b, c, d )  is some permutation of (1,2,3,4). 

A much quicker proof of this fact can be obtained by using the methods of 0 3. If the 
Ricci tensor is type { z ,  5, 1, 1) on U then the eigendirections of the Ricci tensor at any 
point of U are either parallel to ea or to fa or, if p3 = p4, to some (any) linear 
combination of e a  and fa, in the notation of (1.4). The parallel propagation argument 

t A brief discussion i s  given in appendix 3 .  
$Here, 6 is not restricted to being nowhere zero on U. 
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(remembering the relation e"e, = f a f a  = 1) then yields the local equations e,;b =f&b 

and f a ; b  = - e a b  for some vector field pa. The bivector 2ecah1 is then a non-null 
constant bivector and 0 2 shows that this is a contradiction. If the Ricci tensor is type 
(3, 1) on U then, in the notation of (1.3), 1 is the unique null eigendirection of R and is 
hence recurrent, Similarly the eigendirections of R at any point are either parallel to I" 
or f a  or, if cy1 = a2, to some (any) linear combination of them. Again, remembering the 
orthogonality relations on the null tetrad in (1.3), one obtains l a ; b  = laqb, ea$ = l a u b ,  

f a ; b  = &Vb. On applying the Ricci identities to e, and f a  one finds eaRabcd = l&cd and 
f ,Rabcd = lb  Y c d  for simple bivectors x,b and Yab whose blades contain the direction 1. A 
contraction then shows that both e"&, and f "Rab are parallel to 16 and this implies from 
(1.3) that al = a2 = 0. A simple calculation then shows that no Ricci tensor of the form 
(1.3) with a1 = a2 = 0 can be recurrent. In fact a simple substitution into the recurrence 
equation reveals that ea;b  = 0 and so from the Ricci identity e"Rab = 0, which implies 
that p = 0. In the (2, 1 , l )  case again 1 is the unique null eigendirection and is hence 
recurrent. Suppose now that ul, u2 and u3 in (1.2) are distinct at some point p .  Then 
they are distinct in some neighbourhood of p and so the parallel propagates of ( e ) ,  and 
( f ) ,  at some point 4 close to p must be parallel to ( e ) ,  and ( f ) ,  respectively. So e a  and 
f a ,  on account of the relations eae, =fafa = 1, must be constant at p whence the Ricci 
identity yields the contradiction u2 = u3 = 0. If at p ,  u1 # u2 = v3 then an argument 
similar to one given in the {r, 2, 1, 1) case shows the existence of a constant non-null 
bivector and hence a contradiction. Similar arguments remove the cases u1 = u2 # u3 
and u1 = u3 # u2. Hence the only case left is u1 = u2 = u3 ( = U say). In this case one has 
the local equation Rab = Malb +U&,. If U # 0, a direct substitution into the recurrence 
condition shows that 1" is parallel to a constant null vector which, from the Ricci 
identity, implies the contradiction U = 0. For the (1, 1, 1, 1) case, if one of the eigen- 
values pl, p 2 ,  p 3 ,  p4, say pl ,  was distinct from the rest at a point p then the above 
arguments show that the corresponding eigenvector in the tetrad is constant and so 
p1 = 0 at p .  The remainder of the eigenvalues must be equal (and non-zero) otherwise 
one of these eigenvalues would be zero at p ,  contradicting the initial statement about pl .  
The only other possibilities are when all the eigenvalues are equal or when they are 
equal in pairs. Equation (4.1) then results. 

In the (2, 1, 1) case, a recurrent Ricci tensor takes the local form (2.1) with I" 
recurrent and so by methods similar to those in 0 3 one finds that the Weyl tensor is of 
Petrov type 0, N or 111, where in the latter two cases, 1 is the repeated principal null 
direction of the Weyl tensor. In the type N case, the Weyl tensor is complex recurrent or 
conformally symmetric since, for type N spaces, the equation (3.1) is equivalent to the 
repeated principal null direction of the Weyl tensor being recurrent. The Riemann 
tensor is not necessarily recurrent or constant but if it is either, then it readily follows 
that the Weyl tensor satisfies (3.1) and so from the results of § 3, it is necessarily Petrov 
type Nor 0. The general form of the Riemann tensor is readily evaluated in all cases. 

In the type (1, 1, 1, 1) case, equation ( 4 . 1 ~ )  represents an Einstein space and the p 
and the Ricci tensor are constant. In the case when (4 . lb)  holds the local coordinate 
form of the Riemann tensor can be easily constructed. Suppose, for example, we have 
p4 = 0. Then since p4 is distinct from the other eigenvectors, it follows from remarks 
above that the corresponding eigenvector field f a  is constant and so the Ricci identity 
gives taRabcd = 0. Next, one notes that the Riemann tensor can be represented as a 
linear combination of outer products of pairs of the six canonical simple bivectors 
generated by the eigenvectors xa,  y a ,  z a ,  fa. The above condition on t" means that no 
bivector whose blade contains the direction t" will occur in such an expression. These 
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facts together with the remark that the Riemann tensor so constructed must reduce to 
the Ricci tensor given by (4.lb) lead to the following result for the case p4 = 0: 

where p = p1 = p2 = p3 .  The other cases are similar. The derivatives of the canonical 
bivectors in (4.2) can be found from the tetrad derivatives 

for vector fields with local components P a ,  y a  and S a ,  which are readily obtainable from 
the orthonormality relations on the tetrad and the condition ta;b = 0. It can then be 
checked that the Bianchi identity &b[cd;e] = 0 implies that p and that the Riemann, 
Ricci and hence Weyl tensors are all constant. A comparison with 0 3 shows that the 
Weyl tensor is necessarily zero since otherwise it would be conformally symmetric and 
its Ricci tensor type would be i:iconsistent with (4.lb). If ( 4 . 1 ~ )  holds then arguments 
similar to those used in rejecting the {z,  f, 1, 1) case above show that a constant non-null 
bivector is admitted. For example, if p1 = p2 and p 3  = p4 then the bivectors 2x[ayb] and 
2z[,tb] are constant. In this case the results of 0 3 show that in local coordinates, the 
Riemann tensor becomes 

and that the Weyl tensor is Petrov type D or 0 according as p1 + p 3  # 0 or p1 + p 3  = 0. 
The recurrence condition on the Ricci tensor together with the Bianchi identity used 
above then show that p1 and p3 are constant and that the Ricci, Riemann and Weyl 
tensors are all constant. The other cases are similar. Finally if (4.ld) holds then again 
a constant non-null bivector is admitted and by similar arguments to the above one 
concludes that the Ricci, Riemann and Weyl tensors are all recurrent and are constant if 
and only if the non-vanishing p is constant. The recurrence 1-form 8 is a gradient, 
proportional to the gradient of the non-vanishing p, and the vector field associated with 
8 with local components 8' is a Ricci eigenvector (cf Roter 1962). The Weyl tensor is of 
Petrov type D. 

In the case where the Ricci scalar is non-zero, the above results enable the following 
statement to be made. Firstly, if the Ricci tensor is recurrent on U with 8 nowhere zero 
on U, then the Riemann tensor is recurrent (and nowhere constant) on U. Secondly, if 
the Ricci tensor is not proportional to the metric tensor on U, then, on U, a constant 
Ricci tensor implies a constant Riemann tensor. 

5. Conformally flat space-times 

The Riemann tensor 3 is called recurrent on U if .% is nowhere zero on U and 
throughout U, 

where w is a nowhere zero 1-form on U. If (5.1) holds with w = 0 on U, then 92 is called 
symmetn'c on U. In local coordinates, (5.1) reads Rabcdie = Rabcdwe. It follows from 
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Walker's theorem (Walker 1950) that since any manifold is locally smoothly contract- 
ible, w is locally a gradient. If % is recurrent (symmetric) and the Weyl tensor is 
non-zero on U then the Weyl tensor is complex recurrent with a recurrence 1-form 
which is real and locally a gradient (conformally symmetric) and the Ricci tensor is 
recurrent. In $0 3 and 4 information is supplied concerning the Petrov type and Ricci 
tensor type of such space-times and when such space-times admit constant bivectors 
and constant null vectors. 

Suppose now that the Weyl tensor is zero on a chart domain % and that % admits a 
constant non-null bivector. Let 1 and m be the principal null vector fields of the 
constant bivector on U. If 1" and ma are the components of these vector fields, scaled so 
that lama = 1, then by techniques similar to those given earlier one finds that 1" and ma 
are recurrent with recurrence vectors differing only in sign. Hence I(amb);c = 0. It then 
follows from the completeness relation of 0 1, the expressions (2.6) and (2.7) for the 
Ricci and Riemann tensors and the contracted Bianchi identity R:;b = 0 (since now 
(2.4)+R = 0) that CY is a constant in (2.6) and then (2.7) implies that = 0. So the 
Riemann tensor, if non-zero on %, is symmetric on V. 

Suppose now that the Weyl tensor is zero on % and that V admits a constant null 
bivector with principal null vector field 1 on U. It then follows from § 2 that the Ricci 
tensor takes the form (2.1) where I" may be chosen to be constant. Hence the Ricci 
tensor if non-zero on % is recurrent on V. The vanishing of the Weyl tensor on V then 
means that the Riemann tensor (if non-zero on V) is either recurrent or symmetric on %. 
So if the Weyl tensor is zero on % and % admits a constant bevector then the Riemann 
tensor, if non-zero on % is either recurrent or symmetric on %. 

The following converse is available. Suppose the Weyl tensor is zero on V, that % is 
smoothly contractible and that the Riemann tensor is recurrent on V. Then the Ricci 
tensor is recurrent on V with a nowhere zero recurrence 1-form w and it follows from 
§ 4 that the Ricci tensor takes the form (2.1) on '% and 1" is recurrent. The conformally 
flat Bianchi identity R,,, ;cl = 0 then implies that 1, is parallel to U,. So any complex null 
bivector Vab on % with principal null direction along 1" satisfies Vab;c = vabyc for some 
1-form on % with components y,. Finally V,, has vanishing skew derivative from (2.3) 
and manipulations similar to those of § 3, using the PoincarC lemma, show that V admits 
a constant null bivector. The existence of a Ricci tensor of the type (4.lb) together with 
the results of § 2 would show that this converse is false if the Riemann tensor is 
symmetric rather than recurrent on %. 

Finally it is noted that if the Weyl tensor is conformally symmetric and Petrov type D 
on some open subset U of M then the Riemann tensor is symmetric on U (McLenaghan 
and Leroy 1972). This immediately follows in the present formalism by noting that the 
conditions of the result imply that in local coordinates R = constant # 0. The identity 
RE;b = 0 then shows that cy is aconstant in (2.6) and then (2.7) implies that Rabedie = 0. 

6. Applications 

For the type N complex recurrent fields which satisfy the equivalent conditions (a'), (b'), 
(c'), (d') of § 3, one can choose coordinates such that the line element is 

ds2 = dx2+dyz+2du dv + H  du2. (6.1) 
This follows since such fields admit a constant null bivector (Ehlers and Kundt 1962). In 
(6.1) x and y are coordinates in a spacelike 2-surface orthogonal to I " ,  U is an affine 
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parameter along 1" and la = U,". The function H depends on x ,  y and U only. Under 
certain conditions on H, such fields may be interpreted as source-free null Maxwell 
fields, where the relevant tensors take the form 

+ + 
= $ H a b  Cabcd = 4 H a b H c d  Rab = Alalb. (6.2) 

+ 
In (6.2), Hab is a constant complex null bivector, la a constant real null vector, Fab the 
complex self-dual Maxwell bivector, A a real function and (/I and 4 complex 
(amplitude-polarization) functions. Maxwell's source-free equations show that (/I = 
$(U, z )  and is an analytic function of z = x +iy  for each value of U. The rays of the field, 
represented by the paths of the vector field la ,  form an expansion-free, twist-free, 
shear-free, rotation-free null geodesic congruence. A field which intuitively might 
represent a plane null Maxwell radiation field occurs where $ and 4 depend on the 
phase U only. In fact one need only make the assumption 4 = & ( U )  because then the 
Bianchi identities and the Einstein-Maxwell equations imply (/I = @ ( U )  and also A = 
A (U). By following closely the arguments of Ehlers and Kundt (1962), one arrives at the 
conclusion that under this assumption, the quantities H,,. H,yy and H,xy depend only on 
U, whence (cf McLenaghan and Leroy 1972), 

H =  A ,x2 +A2y2  + A3xy + A4x +A5y  + A6 (6.3) 
with the A, (1 s i s 6) depending only on U. A u-dependent translation in the x y  plane 
together with a change of affine origin of the form U + U' = U + f ( x ,  y, U )  may now be 
made which preserves the general form (6.3) but which makes A4 = A5 = A6 = 0. One 
can then show that such metrics admit (at least) the five-parameter group of motions 
typical of 'plane waves' whose paths in the five-parameter case are contained in the 
minimum invariant varieties U = constant. Further, such metrics are complete. The 
proof of this latter result follows from the fact that given any point p and tangent vector 
w at p ,  one can perform a coordinate transformation which preserves the metric (6.3) 
with A4 = A5 = A6 = 0 and is such that in the new coordinates, p is the origin and the 
vector w is tangent either to the subspace U = U = 0 or to the subspace x = y = 0. The 
proof is completed by noting that both these latter subspaces are totally geodesic and 
complete. 

The null Maxwell bivector in the above plane wave field was complex recurrent and 
proportional to a constant null bivector, 

+ + 
(i) F a b ; c  = Fabfc (ii) k a b  = $ H a b  (6.4) 

for some 1-form with components f a .  Although (6.4) implies (6.4ii) if fid is a 
non-null bivector, this is not true if F is null. (This result follows since a null bivector is 
characterized by the condition TabTb = 0.) For null Maxwell bivectors, the condition 
(6.4i) is equivalent to the principal null direction of Fd being recurrent which, in turn, 
is equivalent to this principal null direction being geodesic, with vanishing expansion, 
twist, shear and rotation. But from (2.1), such fields could be Petrov type 111, N or 0 
and from (2.3) only those of type N or 0 satisfy (6.4ii). The above discussion of plane 
waves concerned those type N null Maxwell fields satisfying (6.4i) together with the 
planeness condition embodied in the assumption on the function 4. Indeed, these are 
the only assumptions required since the type N condition and (6.4i) imply that the 
principal null direction of Fab (and C a b c d )  is recurrent whence C&d is also (complex) 
recurrent. Finally, the field equation (2.1) shows that the condition (c ' )  of 0 3 holds. 
Equation (6.4ii) easily follows. 

+ +@b 

+ 
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It is perhaps of interest to remark that for conformally flat null Maxwell fields, 
(6.4i and ii) automatically hold since for such fields the Maxwell principal null 
direction is recurrent (in fact proportional to a constant null vector) (Stephani 1967, 
McLenaghan et ai 1975) and so (6.4i) follows immediately, with (6.4ii) being a 
consequence of (2.3)t .  Further, the planeness requirements are also automatic since in 
(6 .2)  we have 4 = 0 and the conformally flat Bianchi identity RaIbiC1 = 0 implies that 
A = A(u) .  The Einstein-Maxwell equations and the fact that $(U, z )  is analytic in z 
then gives $ = $(U). Equation (6.1) holds where the coordinates can be chosen so that 
H satisfies (6.3) with A3 = A4 = A5 = A6 = 0 and A I  (=  A2) a function of U only. This 
latter metric admits a six-parameter group of motions, five parameters of which are 
similar to the five discussed earlier. The sixth parameter is the wave surface rotation 
z + z' = z e', ( z  = x + iy  and a a constant). These fields are also complete. The extra 
Killing parameter should be compared with the result (due to Szekeres 1965) that a 
circular cloud of neutral test particles would be dispersed symmetrically by a confor- 
mally flat null Maxwell field whereas, for example, a type N null Maxwell field would 
elliptically shear such a cloud. 

Appendix 1 

From the null tetrad ( l a ,  ma,  e a , f " )  used in (2.6) one constructs the complex null tetrad 
( l a ,  m a ,  na,  ti") where &na = e a  +if". Thus one has the equivalent conditions 
lam: = naEa = 1 (all other inner products zero) and gab = 21(,mb) f 24,nb) .  By using the 
complex self-dual bivectors = 2 f [ & , ] ,  = 2m[,nbl and Mab = 2lr,mb1+ 2ii[,nbl 
one can construct the bivector completeness relation (Sachs 1961) 

g a [ c g d ] b  = Re ( vab u c d  + u u b  vcd - i M a d M c d  ). 

Since in the case considered one has Rabcd V d  = R a b c d U C d  = 0, it is now straightforward 
to show from the above completeness relation that the components of the Riemann 
tensor can be expressed in terms of the real and imaginary parts of M a b  and on 
comparison of the result with (2.6) one arrives at (2.7). 

Appendix 2 

By substituting the condition faRabcd = @,d into the expression for the Weyl tensor: 

Cabcd = R a b c d  + R c [ n g b ] d + R d [ b g a ] c  +!4R&[bga]d (A. 1) 
together with the type N condition laCabcd = 0 and the fact that f a  is a Ricci eigenvector, 
one easily finds that in all cases, R = 0. In case (i), the conditions f a R a b c d  = 0, f a C a b c d  = 0 
and R = 0 show that the Ricci tensor takes the form (2.1).  Arguments similar to those 
concerning equation (3.2) show that a constant null bivector with principal null 
direction parallel to f is admitted. In case (ii) Aab is a null bivector with principal null 
direction parallel to 1. On contracting (A.1) with I" and using laCabcd = 0 and R = 0 one 
can check that the only eigendirections of the Ricci tensor are those contained in the 

t For both conformally flat and type N null Maxwell fields one can use the Bianchi identities to show easily 
that the expansion and twist as well as the shear of the principal null congruence vanish. Only in the 
conformally flat case does the rotation also necessarily vanish. 
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(null) blade of Aab and that the respective eigenvalues are zero. Thus one arrives at 
Segrk type ((3, 1)) with zero eigenvalue. In case (iii) Aab is a non-null bivector with 
timelike blade. If one selects a null tetrad based on the principal null directions of Aab 
then (A.l) when contracted with the members of this tetrad show that any (spacelike) 
direction in the blade of Aab is a Ricci eigendirection .The rest of the calculation is then 
fairly straightforward. 

* 

* 

Appendix 3 

The fields characterized by the equivalent conditions (a’), (b’),  (c ’ )  and (d’ )  in 8 3 are a 
natural generalization of the p-p waves of Ehlers and Kundt. To see this, recall that 
Ehlers and Kundt (1962) gave the following characterizations of p-p wave space-times. 

(1) A non-flat vacuum field is a p-p wave@ it admits a constant (necessarily null) 

(2) A non-flat vacuum field is a p-p wave @ the Riemann tensor is complex 

(3) A non-flat vacuum field is a p-p wave @ it admits a constant (necessarily null) 

bivector . 

recurrent (with recurrence 1-form necessarily a gradient). 

vector. 
The Riemann tensor of a p-p wave is necessarily of Petrov type N. 

The conditions (a’), (6’) and ( d ’ )  of the present paper correspond to the above 
conditions (l), (2) and (3) respectively. That the former conditions contain more 
restrictions is a consequence of the fact that in vacuo a complex recurrent space-time is 
necessarily of Petrov type N, necessarily has a gradient recurrence 1-form and the 
constant bivectors and vectors which are admitted are necessarily null. None of these 
results hold in general if the vacuum condition is dropped. General complex recurrent 
space-times could be either Petrov type N or D and have been separated into the four 
categories of type N (i), (ii) and (iii) and Type D. As was pointed out in 8 3, the 
conditions of the type N (i) category are equivalent to the above conditions (a’), (b‘), (c ‘ )  
and (d’ )  and so this category selects what appears to be a fairly natural generalization of 
a p-p wave. The condition (c’) shows how such a characterization may be given in terms 
of the algebraic properties of the Ricci tensor. 

The equivalence of the conditions (a)  and ( b )  given in § 3 is a more general extension 
of result (i) above. 
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